Механические колебания — Гипермаркет знаний. Механические колебания Формулы по теме механические волны

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.

Гармонические колебания происходят по закону:

x = A cos(ωt + φ 0),

где x – смещение частицы от положения равновесия, А – амплитуда колебаний, ω – круговая частота, φ 0 – начальная фаза, t – время.

Период колебаний T = .

Скорость колеблющейся частицы:

υ = = – A ω sin (ωt + φ 0),

ускорение a = = – A ω 2 cos (ωt + φ 0).

Кинетическая энергия частицы, совершающей колебательное движение: E k = =
sin 2 (ωt + φ 0).

Потенциальная энергия:

E n =
cos 2 (ωt + φ 0).

Периоды колебаний маятников

– пружинного T =
,

где m – масса груза, k – коэффициент жесткости пружины,

– математического T = ,

где l – длина подвеса, g – ускорение свободного падения,

– физического T =
,

где I – момент инерции маятника относительно оси, проходящей через точку подвеса, m – масса маятника, l – расстояние от точки подвеса до центра масс.

Приведенная длина физического маятника находится из условия: l np = ,

обозначения те же, что для физического маятника.

При сложении двух гармонических колебаний одной частоты и одного направления получается гармоническое колебание той же частоты с амплитудой:

A = A 1 2 + A 2 2 + 2A 1 A 2 cos(φ 2 – φ 1)

и начальной фазой: φ = arctg
.

где А 1 , A 2 – амплитуды, φ 1 , φ 2 – начальные фазы складываемых колебаний.

Траектория результирующего движения при сложении взаимноперпендикулярных колебаний одной частоты:

+ cos (φ 2 – φ 1) = sin 2 (φ 2 – φ 1).

Затухающие колебания происходят по закону:

x = A 0 e - β t cos(ωt + φ 0),

где β – коэффициент затухания, смысл остальных параметров тот же, что для гармонических колебаний, А 0 – начальная амплитуда. В момент времени t амплитуда колебаний:

A = A 0 e - β t .

Логарифмическим декрементом затухания называют:

λ = ln
= βT ,

где Т – период колебания: T = .

Добротностью колебательной системы называют:

Уравнение плоской бегущей волны имеет вид:

y = y 0 cos ω(t ± ),

где у – смещение колеблющейся величины от положения равновесия, у 0 – амплитуда, ω – круговая частота, t – время, х – координата, вдоль которой распространяется волна, υ – скорость распространения волны.

Знак «+» соответствует волне, распространяющейся против оси X , знак «–» соответствует волне, распространяющейся по оси Х .

Длиной волны называют ее пространственный период:

λ = υ T ,

где υ –скорость распространения волны, T –период распространяющихся колебаний.

Уравнение волны можно записать:

y = y 0 cos 2π (+).

Стоячая волна описывается уравнением:

y = (2y 0 cos ) cos ωt.

В скобки заключена амплитуда стоячей волны. Точки с максимальной амплитудой называются пучностями,

x п = n ,

точки с нулевой амплитудой – узлами,

x у = (n + ) .

Примеры решения задач

Задача 20

Амплитуда гармонических колебаний равна 50 мм, период 4 с и начальная фаза . а) Записать уравнение этого колебания; б) найти смещения колеблющейся точки от положения равновесия при t =0 и при t = 1,5 с; в) начертить график этого движения.

Решение

Уравнение колебания записывается в виде x = a cos(t +  0).

По условию известен период колебаний. Через него можно выразить круговую частоту  = . Остальные параметры известны:

а) x = 0,05 cos(t + ).

б) Смещение x при t = 0.

x 1 = 0,05 cos= 0,05 = 0,0355 м.

При t = 1,5 c

x 2 = 0,05 cos( 1,5 + )= 0,05 cos  = – 0,05 м.

в) график функцииx =0,05cos (t + ) выглядит следующим образом:

Определим положение нескольких точек. Известны х 1 (0) и х 2 (1,5), а также период колебаний. Значит, через t = 4 c значение х повторяется, а через t = 2 c меняет знак. Между максимумом и минимумом посередине – 0 .

Задача 21

Точка совершает гармоническое колебание. Период колебаний 2 с, амплитуда 50 мм, начальная фаза равна нулю. Найти скорость точки в момент времени, когда ее смещение от положения равновесия равно 25 мм.

Решение

1 способ. Записываем уравнение колебания точки:

x = 0,05 cos  t , т. к.  = =.

Находим скорость в момент времени t :

υ = = – 0,05 cos  t.

Находим момент времени, когда смещение равно 0,025 м:

0,025 = 0,05 cos  t 1 ,

отсюда cos t 1 = , t 1 = . Подставляем это значение в выражение для скорости:

υ = – 0,05  sin = – 0,05  = 0,136 м/c.

2 способ. Полная энергия колебательного движения:

E =
,

где а – амплитуда,  – круговая частота, m масса частицы.

В каждый момент времени она складывается из потенциальной и кинетической энергии точки

E k = , E п = , но k = m  2 , значит, E п =
.

Запишем закон сохранения энергии:

= +
,

отсюда получаем: a 2  2 = υ 2 +  2 x 2 ,

υ = 
= 
= 0,136 м/c.

Задача 22

Амплитуда гармонических колебаний материальной точки А = 2 см, полная энергия Е = 3∙10 -7 Дж. При каком смещении от положения равновесия на колеблющуюся точку действует сила F = 2,25∙10 -5 Н?

Решение

Полная энергия точки, совершающей гармонические колебания, равна: E =
. (13)

Модуль упругой силы выражается через смещение точек от положения равновесия x следующим образом:

F = k x (14)

В формулу (13) входят масса m и круговая частота , а в (14) – коэффициент жесткости k . Но круговая частота связана с m и k :

 2 = ,

отсюда k = m  2 и F = m  2 x . Выразив m  2 из соотношения (13) получим: m  2 = , F = x .

Откуда и получаем выражение для смещения x : x = .

Подстановка числовых значений дает:

x =
= 1,5∙10 -2 м = 1,5 см.

Задача 23

Точка участвует в двух колебаниях с одинаковыми периодами и начальными фазами. Амплитуды колебаний А 1 = 3 см и А 2 = 4 см. Найти амплитуду результирующего колебания, если: 1) колебания происходят в одном направлении; 2) колебания взаимно перпендикулярны.

Решение

    Если колебания происходят в одном направлении, то амплитуда результирующего колебания определится как:

где А 1 и А 2 – амплитуды складываемых колебаний,  1 и  2 –начальные фазы. По условию начальные фазы одинаковы, значит  2 –  1 = 0, а cos 0 = 1.

Следовательно:

A =
=
= А 1 +А ­ 2 = 7 см.

    Если колебания взаимно перпендикулярны, то уравнение результирующего движения будет:

cos( 2 –  1) = sin 2 ( 2 –  1).

Так как по условию  2 –  1 = 0, cos 0 = 1, sin 0 = 0, то уравнение запишется в виде:
=0,

или
=0,

или
.

Полученное соотношение между x и у можно изобразить на графике. Из графика видно, что результирующим будет колебание точки на прямой MN . Амплитуда этого колебания определится как: A =
= 5 см.

Задача 24

Период затухающих колебаний Т =4 с, логарифмический декремент затухания  = 1,6 , начальная фаза равна нулю. Смещение точки при t = равно 4,5 см. 1) Написать уравнение этого колебания; 2) Построить график этого движения для двух периодов.

Решение

    Уравнение затухающих колебаний с нулевой начальной фазой имеет вид:

x = A 0 e -  t cos2 .

Для подстановки числовых значений не хватает величин начальной амплитуды А 0 и коэффициента затухания .

Коэффициент затухания можно определить из соотношения для логарифмического декремента затухания:

 = Т .

Таким образом  = = = 0,4 с -1 .

Начальную амплитуду можно определить, подставив второе условие:

4,5 см = A 0
cos 2= A 0
cos =A 0
.

Отсюда находим:

A 0 = 4,5∙

(см) = 7,75 см.

Окончательно уравнение движения:

x = 0,0775
cost.


Задача 25

Чему равен логарифмический декремент затухания математического маятника, если за t = 1 мин амплитуда колебаний уменьшилась в два раза? Длина маятника l = 1 м.

Решение

Логарифмический декремент затухания можно найти из соотношения: = Т ,

где  – коэффициент затухания, Т – период колебаний. Собственная круговая частота математического маятника:

 0 =
= 3,13 с -1 .

Коэффициент затухания колебаний можно определить из условия: A 0 = A 0 e -  t ,

t = ln2 = 0,693 ,

 =
= 0,0116c -1 .

Поскольку  <<  0 , то в формуле  =
можно пренебречь по сравнению с  0 и период колебаний определить по формуле: T = = 2c.

Подставляем  и Т в выражение для логарифмического декремента затухания и получаем:

 = T = 0,0116 с -1 ∙ 2 с = 0,0232.

Задача 26

Уравнение незатухающих колебаний дано в виде x = 4 sin600 t см.

Найти смещение от положения равновесия точки, находящейся на расстоянии l = 75 см от источника колебаний, через t = 0,01 с после начала колебаний. Скорость распространения колебаний υ = 300 м/с.

Решение

Запишем уравнение волны, распространяющейся от данного источника: x = 0,04 sin 600 (t – ).

Находим фазу волны в данный момент времени в данном месте:

t – = 0,01 –= 0,0075 ,

600 ∙ 0,0075 = 4,5 ,

sin 4,5 = sin = 1.

Следовательно, смещение точки x = 0,04 м, т.е. на расстоянии l =75 см от источника в момент времени t = 0,01 c смещение точки максимально.

Список литературы

    Волькенштейн В.С . Сборник задач по общему курсу физики. – СПб.: СпецЛит, 2001.

    Савельев И.В . Сборник вопросов и задач по общей физике. – М.: Наука, 1998.

И получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Колебательными движениями (или колебаниями) в физике и технике называют такие виды движений (или изменения состояний), которые обладают какой-либо степенью повторяемости.

Колебания, происходящие по законам синуса или косинуса, называют гармоническими.

Уравнение гармонических колебаний:

где t-время; x-величина изменяющаяся со временем (координата, заряд, ток, ЭДС и т.п.); A- амплитуда колебаний – максимальное отклонение колеблющейся величины от среднего (нулевого) значения; - фаза колебаний; - начальная фаза; w- циклическая частота (изменение фазы в единицу времени). За период фаза меняется на .

Дифференциальное уравнение гармонических колебаний

Уравнение вида:

дифференциальное уравнение гармонических колебаний.

Виды периодических колебаний можно с любой степени точности можно представить в виде суммы гармонических колебаний, так называемого гармонического ряда.

Колебания, которые будет совершать тело, если его вывести из состояния равновесия (не важно как) и предоставить самому себе, называют свободными (собственными) колебаниями. Если собственные колебания вызваны наличием только квазиупругой силы, то они будут гармоническими.

Колебания тела, обусловленные одновременным действием квазиупругой силы и силы трения (которая пропорциональна мгновенной скорости: ), называют затухающими колебаниями.

Уравнение (3) называется дифференциальным уравнением затухающих колебаний. Здесь – коэффициент затухания.

Решение дифференциального уравнения колебаний

Решением дифференциального уравнения затухающих колебаний (3) является соотношение вида:

Уравнение (4) называется уравнением затухающих колебаний. В уравнении (4) видно, что амплитуда затухающих колебаний зависит от времени. Константы A и определяются начальными условиями. Амплитуда колебаний убывает и они в целом выглядят так, как представлено на рис. 1

рис. 1.

Период затухающих колебаний вычисляется по формуле (5):

Физический коэффициента затухания смысл состоит в том, что коэффициент затухания – величина, обратная времени релаксации. А время релаксации – это время, за которое амплитуда уменьшается в e раз. Однако коэффициент затухания не вполне характеризует затухание. Обычно затухание колебаний характеризуется декрементом затухания. Последний показывает, во сколько раз уменьшается амплитуда колебаний за время, равное периоду колебаний. То есть декремент затухания определяется так:

Логарифм декремента затухания называется логарифмическим декрементом, он, очевидно, равен:

Если колебательная система подвергается воздействию внешней периодической силы, то возникают так называемые вынужденные колебания, имеющие незатухающий характер.

Вынужденные колебания следует отличать от автоколебаний. В случае автоколебаний в системе предполагается специальный механизм, который в такт с собственными колебаниями «поставляет» в систему небольшие порции энергии.

Примеры решения задач

ПРИМЕР 1

Задание Найдите энергию свободных колебаний груза подвешенного на пружине Рассмотрите случай физического маятника, зная, что жесткость пружины k, амплитуда колебаний A.

Решение Найдем энергию свободных колебаний. Она представлена двумя видами энергии: кинетической и потенциальной. Для шарика, подвешенного на пружине:

Колебания шарика описывает уравнение колебаний:

запишем уравнение колебаний скорости шарика, зная, что , движение происходит только вдоль оси Х следовательно:

Подставим (1.2) и (1.3) в (1.1), получим:

зная, что для физического маятника

Ответ Энергия свободных колебаний пропорциональна квадрату амплитуды колебаний

§ 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

Уравнение гармонических колебаний

где х - смещение колеблющейся точки от положения равновесия; t - время; А, ω, φ- соответственно амплитуда, угловая частота, начальная фаза колебаний; - фаза колебаний в момент t .

Угловая частота колебаний

где ν и Т - частота и период колебаний.

Скорость точки, совершающей гармонические колебания,

Ускорение при гармоническом колебании

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a 1 и А 2 - амплитуды составляющих колебаний; φ 1 и φ 2 - их начальные фазы.

Начальная фаза φ результирующего колебания может быть найдена из формулы

Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν 1 и ν 2 ,

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A 1 и A 2 и начальны­ми фазами φ 1 и φ 2 ,

Если начальные фазы φ 1 и φ 2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение принимает вид

т. е. точка движется по эллипсу.

Дифференциальное уравнение гармонических колебаний ма­териальной точки

Или , где m - масса точки; k - коэффициент квазиупругой силы (k =т ω 2).

Полная энергия материальной точки, совершающей гармони­ческие колебания,

Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m - масса тела; k - жесткость пружины. Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l - длина маятника; g - ускорение свободного падения. Период колебаний физического маятника

где J - момент инерции колеблющегося тела относительно оси

колебаний; а - расстояние центра масс маятника от оси колебаний;

Приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не более ошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где J - момент инерции тела относительно оси, совпадающей с упругой нитью; k - жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

Дифференциальное уравнение затухающих колебаний , или ,

где r - коэффициент сопротивления; δ - коэффициент затухания: ; ω 0 - собственная угловая частота колебаний *

Уравнение затухающих колебаний

где A (t) - амплитуда затухающих колебаний в момент t; ω - их угловая частота.

Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

где А 0 - амплитуда колебаний в момент t =0.

Логарифмический декремент колебаний

где A (t) и A (t+T) - амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

Дифференциальное уравнение вынужденных колебаний

где - внешняя периодическая сила, действующая на колеблющуюся материальную точку и вызывающая вынужденные колебания; F 0 - ее амплитудное значение;

Амплитуда вынужденных колебаний

Резонансная частота и резонансная амплитуда и

Примеры решения задач

Пример 1. Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если

x (0)= см и х , (0)<0. Построить векторную диаграмму для мо-­ мента t =0.

Решение. Воспользуемся уравнением движения и выразим смещение в момент t =0 через начальную фазу:

Отсюда найдем начальную фазу:

* В приведенных ранее формулах гармонических колебаний та же величина обозначалась просто ω (без индекса 0).

Подставим в это выражение заданные значения x (0) и А: φ= = . Значению аргумента удовлетворяют два значения угла:

Для того чтобы решить, какое из этих значений угла φ удовлет-­ воряет еще и условию , найдем сначала :

Подставив в это выражение значение t =0 и поочередно значения начальных фаз и , найдем

Так как всегда A >0 и ω>0, то условию удовлетворяет толь­ ко первое значение начальной фазы. Таким образом, искомая начальная фаза

По найденному значению φ постро-­ им векторную диаграмму (рис. 6.1). Пример 2. Материальная точка массой т =5 г совершает гармоничес-­ кие колебания с частотой ν =0,5 Гц. Амплитуда колебаний A =3 см. Оп-­ ределить: 1) скорость υ точки в мо-­ мент времени, когда смещение х= = 1,5 см; 2) максимальную силу F max , действующую на точку; 3) Рис. 6.1 полную энергию Е колеблющейся точ­ ки.

а формулу скорости получим, взяв первую производную по времени от смещения:

Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квад­рат, разделим первое на А 2 , второе на A 2 ω 2 и сложим:

Решив последнее уравнение относительно υ, найдем

Выполнив вычисления по этой формуле, получим

Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус - ког­да направление скорости совпадает с отрицательным направлением оси х.

Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением

Повторив с этим уравнением такое же решение, получим тот же ответ.

2. Силу действующую на точку, найдем по второму закону Нью­тона:

где а - ускорение точки, которое получим, взяв производную по времени от скорости:

Подставив выражение ускорения в формулу (3), получим

Отсюда максимальное значение силы

Подставив в это уравнение значения величин π, ν, т и A, найдем

3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента вре­мени.

Проще всего вычислить полную энергию в момент, когда кинети­ческая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии

Максимальную скорость определим из формулы (2), положив : . Подставив выражение скорости в фор­- мулу (4), найдем

Подставив значения величин в эту формулу и произведя вычис­ления, получим

или мкДж.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m 3 =400 г укреплены шарики малых размеров массами m 1 =200 г и m 2 =300г. Стержень колеблется около горизонтальной оси, перпен-

дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением

где J - т - его масса; l С - расстояние от центра масс ма­ятника до оси.

Момент инерции данного маятника равен сумме моментов инерции шариков J 1 и J 2 и стержня J 3:

Принимая шарики за материальные точки, вы­разим моменты их инерции:

Так как ось проходит через середину стержня, то его момент инерции относительно этой оси J 3 = = . Подставив полученные выражения J 1 , J 2 и J 3 в формулу (2), найдем общий момент инерции фи-­ зического маятника:

Произведя вычисления по этой формуле, найдем

Рис. 6.2 Масса маятника состоит из масс шариков и массы стержня:

Расстояние l С центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое рас­стояние l равно координате центра масс маятника, т. е.

Подставив значения величин m 1 , m 2 , m , l и произведя вычисле­ния, найдем

Произведя расчеты по формуле (1), получим период колебаний физического маятника:

Пример 4. Физический маятник представляет собой стержень длиной l = 1 м и массой 3т 1 с прикрепленным к одному из его концов обручем диаметром и массой т 1 . Горизонтальная ось Oz

маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.

Решение. Период колебаний физического маятника опреде­ляется по формуле

где J - момент инерции маятника относительно оси колебаний; т - его масса; l C - расстояние от центра масс маятника до оси колебаний.

Момент инерции маятника равен сумме мо­ментов инерции стержня J 1 и обруча J 2:

Момент инерции стержня относительно оси, перпендикулярной стержню и проходящей через его центр масс, определяется по форму-­ ле . В данном случае т= 3т 1 и

Момент инерции обруча найдем, восполь-­ зовавшись теоремой Штейнера , где J - момент инерции относительно про-­ извольной оси; J 0 - момент инерции отно-­ сительно оси, проходящей через центр масс параллельно заданной оси; а - расстояние между указанными осями. Применив эту фор-­ мулу к обручу, получим

Подставив выражения J 1 и J 2 в форму­лу (2), найдем момент инерции маятника относительно оси вра­щения:

Расстояние l С от оси маятника до его центра масс равно

Подставив в формулу (1) выражения J , l с и массы маятника , найдем период его колебаний:

После вычисления по этой формуле получим T =2,17 с.

Пример 5. Складываются два колебания одинакового направле-­ ния, выражаемых уравнениями ; х 2 = =, где А 1 = 1 см, A 2 =2 см, с, с, ω = =. 1. Определить начальные фазы φ 1 и φ 2 составляющих коле-

баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Решение. 1. Уравнение гармонического колебания имеет вид

Преобразуем уравнения, заданные в условии задачи, к такому же виду:

Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний:

Рад и рад.

2. Для определения амплитуды А результирую­щего колебания удобно воспользоваться векторной диаграммой, представленной на рис. 6.4. Согласно теореме косинусов, получим

где - разность фаз составляющих колебаний. Так как , то, подставляя найденные значения φ 2 и φ 1 получим рад.

Подставим значения А 1 , А 2 и в формулу (3) и произведем вычисления:

A = 2,65 см.

Тангенс начальной фазы φ результирующего колебания опреде-­ лим непосредственно из рис. 6.4: , отку-­ да начальная фаза

Подставим значения А 1 , А 2 , φ 1 , φ 2 и произведем вычисления:

Так как угловые частоты складываемых колебаний одинаковы, то результирующее колебание будет иметь ту же частоту ω. Это позволяет написать уравнение результирующего колебания в виде , где A =2,65 см, , рад.

Пример 6. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравне­ния которых

где a 1 = 1 см, A 2 =2 см, . Найти уравнение траектории точ-­ ки. Построить траекторию с соблюдением масштаба и указать направление движения точки.

Решение. Чтобы найти уравнение траектории точки, ис­ключим время t из заданных уравнений (1) и (2). Для этого восполь-

зуемся формулой . В данном случае , поэтому

Так как согласно формуле (1) , то уравнение траекто-­ рии

Полученное выражение представляет собой уравнение параболы, ось которой совпадает с осью Ох. Из уравнений (1) и (2) следует, что смещение точки по осям координат ограничено и заключено в пределах от -1 до +1 см по оси Ох и от -2 до +2 см по оси Оу.

Для построения траектории найдем по уравнению (3) значения у, соответствующие ряду значений х, удовлетворяющих условию см, и составим таблицу:

X , СМ

Начертив координатные оси и выбрав масштаб, нанесем на пло­скость хОу найденные точки. Соединив их плавной кривой, получим траекторию точки, совершающей колеба­ния в соответствии с уравнениями движе­ния (1) и (2) (рис. 6.5).

Для того чтобы указать направление движения точки, проследим за тем, как из­меняется ее положение с течением времени. В начальный момент t =0 координаты точ­ки равны x (0)=1 см и y (0)=2 см. В по­следующий момент времени, например при t 1 =l с, координаты точек изменятся и ста­нут равными х (1)= -1 см, y(t)=0. Зная положения точек в начальный и последую­щий (близкий) моменты времени, можно указать направление движения точки по траектории. На рис. 6.5 это направление движения указано стрелкой (от точки А к началу координат). После того как в мо­мент t 2 = 2 с колеблющаяся точка достиг­нет точки D, она будет двигаться в обратном направлении.

Задачи

Кинематика гармонических колебаний

6.1. Уравнение колебаний точки имеет вид , где ω=π с -1 , τ=0,2 с. Определить период Т и начальную фазу φ колебаний.

6.2. Определить период Т, частоту v и начальную фазу φ коле­баний, заданных уравнением , где ω=2,5π с -1 , τ=0,4 с.

6.3. Точка совершает колебания по закону , где A х(0)=2 см и ; 2) х(0) =см и ; 3) х(0)=2см и ; 4) х(0)= и . Построить векторную диаграмму для момента t =0.

6.4. Точка совершает колебания.по закону , где A =4 см. Определить начальную фазу φ, если: 1) х(0) = 2 см и ; 2) x (0)= см и ; 3) х (0)= см и ; 4) x (0)=см и . Построить векторную диаграмму для момента t =0.

Поделитесь с друзьями или сохраните для себя:

Загрузка...